CSx25: Digital Signal Processing NCS224: Signals and Systems

Assignment no 05: Chapter 6

Note: You can check the exercises after the book Chapter. In our assignment, we are using the first edition of "Signals and Systems: A MATLAB Integrated Approach" By Oktay Alkin.

6.1. Consider the triangular waveform shown in Fig. P.6.1.

Figure P. 6.1

Its Fourier transform is

$$X_a(f) = A\tau \operatorname{sinc}^2(f\tau)$$

Let A = 1 and $\tau = 1$ s. The signal $x_a(t)$ is impulse-sampled using a sampling rate of $f_s = 5$ Hz.

- **a.** Sketch the impulse-sampled signal $x_s(t)$.
- **b.** Find an expression for $X_s(f)$.
- c. Sketch $X_s(f)$ for $-10 \le f \le 10$ Hz.

6.2. An analog signal $x_a(t)$ has the Fourier transform shown in Fig. P.6.2.

The signal is impulse sampled using a sampling rate of $f_s = 100$ Hz to obtain the signal $x_s(t)$. Sketch the spectrum $X_s(\omega)$.

6.8. A sinusoidal signal $x_a(t) = \sin(2\pi f_a t)$ with a frequency of $f_a = 1$ kHz is sampled using a sampling rate of $f_s = 2.4$ kHz to obtain a discrete-time signal x[n].

- **a.** Manually **sketch** the signal $x_a(t)$ for the time interval $0 \le t \le 5$ ms.
- **b.** Show the sample amplitudes of the discrete-time signal x[n] on the sketch of $x_a(t)$.

CSx25: Digital Signal Processing NCS224: Signals and Systems

Answers

6.1. Answer

a.

b. Using A = 1 and $\tau = 1$ the transform of the original signal $x_a(t)$ is

$$X_a() = \operatorname{sinc}^2(f)$$

The transform of the impulse sampled signal $x_{s}(t)$ is

$$X_{s}() = \frac{1}{T_{s}} \sum_{k=-\infty}^{\infty} X_{a} (f - kf_{s})$$
$$= 5 \sum_{k=-\infty}^{\infty} \operatorname{sinc}^{2} (f - 5k)$$

c.

CSx25: Digital Signal Processing NCS224: Signals and Systems

6.2. Answer

6.8. Answer

